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MATHEMATICAL CONTEXTS AND THE PERCEPTION
OF MEANING IN ALGEBRAIC SYMBOLS

Anne R, Teppo, Montana State University
Warren W. Esty, Montana State University

This paper presents an analysis of the different types of meanings that an individual may
assign to a collection of algebraic symbols depending on the mathematical context in which
the symbols are presented and the mathematical knowledge possessed by that individual.
Four contexts for the Quadratic Theorem are used to illustrate the ways in which generali-

zation and abstraction develop the meaning of algebraic entities by changing focus from
process to structure.

Research investigating students’ construction of mathematical ideas can be
enriched by including analyses of the mathematical structures under study. It is
important for researchers to be aware of the “iniplicit, unspoken assumptions about
the nature of the concepts being considered” (Taii, 1992, p. 508). Behretal. (1994,
p. 124) recommend a “deep, careful, and detailed analysis of mathematical con-
structs both to exhibit their mathematical structure and to hypothesize about the
cognitive structures necessary for understanding them.” This paper uses an analy-
sis of the mathematical concepts embodied in the Quadratic Theorem to investi-
gate mathematical structures and processes involved in the development of alge-
braic thinking.

The Quadratic Theorem: If a £0, then a2 +bx+c=0is equivalent to

_ b’ ~dac

2a
The Quadratic Theorem is used to solve equations. As with many other theo-
rems, it expresses an abstract symbolic problem-pattern, “ox2 + bx+¢=0" (ifazx
0), and gives a corresponding solution-pattern,

b \b% — dac
2a '

This theorem aptly illustrates how the language of algebra can be used as a
highly effective medium for expressing mathematical thoughts. However, the
meaning that is : ssigned to such & symbolic sentence depends upon the knowledge
of the reader and the mathematical context in which the sentence appears (Sfard
and Linchevski, 1994). Four different contexts related to the Quadratic Theorem
are presented to illustrate how the perception of meaning may vary according to
the kind of mathematical constructs an individual is prepared to notice.
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Context 1: Quadratic Formula

—bi‘\lbz - 4dac

Evaluate x = fora=5,b=2and ¢c =-3.
2a

The problem-pattern, “ax® + bx + ¢ = 0,” plays no role in this example. Only
the second half of the theorem, known as the Quadratic Formula, is given. Here
the collection of symbols performs the role of a formula, which represents a differ-
ent type of conceptual entity than that of the whole Quadratic Theorem. In such a
“plug in” problem the context is numerical. The reader only needs to interpret the
symbol sentence as a set of directions for computing a number.

Context 2: Problems appear only in a limited, simplified
quadratic form.

Use the Quadratic Theorem to solve the following:
a) 5x-T7x-12=0.
b) 10-2x*+7x=0.

c) 3xr=6x+14.
d) x(x+1D=T7.
e) dl+kx=c.

This context requires the reader to focus attention on the pattern of coeffi-
cients in the problem-pattern of the theorem, a pattern that is ignored in Context 1.
These five problems emphasize the concept of parameters and the role of symbols
as placeholders (which are also called dummy variables). Although the computa-
tional process is the same as in Context 1, the numbers (or expressions) to which
the process applies must first be identified. The reader iniust be able to perceive
that the problem-pattern “ax? + bx + ¢ = 07 represents a generalization that is
common to the collection of symbols in each equation. Only equation (a) utilizes
the theorem’s given left-to-right alphabetical order. The other equations require
interpretation of what the problem-pattern is intended to represent.

Equations (a) through (d) can also be solved numerically (instead of algebra-
ically) simply by graphing the two component expressions of each equation and
noting the x-values where they are equal, without any reorganization or identifica-
tion of parameters. The numerical approach avoids using the theorem, and thus
avoids the necessity to discriminate between the different symbolic roles of “a,”
“b,” and “c.”

Thz role of the problem-pattern in the Quadratic Theorem is to abstractly de-
scribe ' 1e type of problem to which the theorem applies. In Context 2 this type is
distinguished by the appearance of “x*”” and “x” in each equation, using the par-
ticular symbol “x.” As such, these equations are a very specific representation of
the abstract problem-pattern. This application of the Quadratic Theorem does not




require the reader to regard the symbolic “x*” as representing the operation of
squaring as opposed to the result of that operation applied to “x.”

Context 3: Problems where the squaring does not apply
to an unknown “x.”

a) In the Law of Cosines, solve for b: ¢ =a? + b* - 2ab cos C.
b) Solve for x: sin’x = sin x - .2 [given the ability to solve “sin x = ¢”’]

c) Using a graphics calculator, graph: y* + 3xy + 22 = 14,
[When equations must be entered in the form “y =....”]

In the Quadratic Theorem “x” is just as much a dummy variable as “a,” “b,” or
“c.” The role of “x2” in the problem pattern is to represent squaring (the opera-
tion) applied to any expression, not just to “x.”” The problems in Context 3 require
a shift in understanding of the nature of the conceptual entities represented by the
variables in the given Quadratic Theorem. In Context 2 the signifiers (x2 and x)
directly represented that which they signified. Even though the quadratic nature
(the squaring) of the equations was apparent, it did not need to be the focus of
attention since the theorem could be applied through a one-to-one matching of
patterns of symbol strings.

In contrast, in Context 3 the algebraic symbols in the Quadratic Theorem must
be perceived as representing sequences of operations, not just strings of similar
symbols. Although x2 o may represent a number, the purpose of “x2” in the
theorem is now seen as representing squaring, even if it is not “x” that is squared.
For example, in part (c) “y” plays the role of “x” in the theorem and “2 147 is
represented by the symbol “c.” To recognize that the Quadratic Theorem is rel-
evant in Context 3 it is necessary to regard squaring as an object divorced from a
particular symbolic representation.

The quadratic nature of the three equations can no longer be determined by a
direct correspondence to specific symbols in the problem-pattern of the Quadratic
Theorem. For example, in equations (a) and (c) squaring may appear more than
once. In equations (a) and (b) it is not “x” that is squared and in equation (c) “x”
does not represent the unknown. It may be particularly difficult to recognize the
relevance of the Quadratic Theorem to graphing the equation in equation (c).

Context 4: A textbook’s statement of a theorem.

a) The Quadratic Theorem.

b) The Theorem on Absolute Values: | x| < c is equivalent to -c < x < c.

In Context 4 the theorem itself is the focus of attention. Meaning is assigned
according to the symbolic structure of the theorem, which contains paired equa-
tions or inequalities, rather than through the interpretation of symbols within indi-
vidual equations. As a conceptual entity, a theorem is perceived as describing




when it may be used (with its problem-pattern) and how it may be used (with its
solution-pattern). The collection of symbols in a theorem conveys information
about the abstract family of problems to which the theorem applies and the prob-
lem-solving process the theorem describes, rather than about the end results of
using such processes. This shift in perception represents a level of abstraction
above that used in the preceding contexts which were focused at a parametric and
operational, rather than a structural level.

Conclusions

The four contexts illustrate how different types of meaning can be assigned to
the same collection of algebraic symbols according to the nature of the mathemati-
cal entities for which these symbols act as signifiers. Context 1 represents the use
of algebraic symbols as a way to convey a generalization about a particular pattern
of arithmetic computations. In Context 2 symbols are used to identify a single
family of equations to which a single solution-process applies. The Quadratic
Theorem is perceived as a description of the way in which this family can be
represented and manipulated rather than as a process that is executed.

Context 3 requires an expansive generalization of the concept of a quadratic
family of equations. This type of generalization extends existing cognitive struc-
tures rather than changes them (Tall, 1991). In this context the objects to which
the operation of squaring applies need no longer be fixed unknown numbers repre-
sented by “x,” but can also be variable quantities expressed by other algebraic
expressions. This use of dummy variables where “x*” can represent “y?” and *c”
can represent “x2 - 14” does not have a parallel in English or other languages. The
dummy variables in this context take on meaning for their ability to represent
operations as objects.

In Context 4 the theorems describe certain types of problems and how to solve
them by using an abstract problem-pattern/solution-pattern structure. This struc-
ture represents an abstraction of the operations used in previous contexts to solve
specific families of equations.

What is different in each of the four contexts is the way that the collection of
algebraic symbols representing the Quadratic Theorem is perceived. However,
shifting perceptions is not a simple matter. Expansive generalizations, which cre-
ate more complex contexts for conceptual entities, may perform an important role
in preparing students to move to a new level of abstraction. If “we inadvertently
present simplified regularities which become part of the individual concept image,
[these] deeply ingrained cognitive structures can cause serious cognitive conflict
and act as obstacles to learning.” (Tall, 1989, p. 37)

Shifts in perception that involve conceptual reorganizations take place through
the process of abstraction. According to Sfard (1991, p. 18), “First there must be a
process performed on already familiar objects, then the idea of turning this process
into an autonomous entity should emerge, and finally the ability to see this new
entity as an integrated, object-like whole must be acquired.” Students at a lower
level of mathematical abstraction will not perceive the higher-level objects (Sfard

§)




and Linchevski, 1994). The new objects are apparent only when one has made an
appropriate abstraction and shifted to a new perceptual focus.

The four contexts also exhibit another property of algebraic entities. Collec-
tions of symbols may be perceived operationally as processes or structuraily as
objects (Sfard, 1991). The specific abstractions that are required to shift percep-
tion from Context 1 to 2, and from Context 3 to 4 illustrate how meanings assigned
to collections of symbols shift from one of using processes to one of studying the
structure of these processes. According to Sfard, there are “differences between
these two modes of thinking [that retlect different] beliefs about the nature of
mathematical entities. There is a deep ontological gap between operational and
structural conceptions” (p. 4).

The examples discussed in this paper illustrate the range of mathematical en-
tities that may be perceived within the same collection of algebraic symbols and
how specific contexts can elicit a procedural or a structural interpretation of these
entities. Such an analysis has been used to formulate research tasks to study stu-
dents’ abilities to use particular algebraic constructs (Sfard and Linchevski, 1994,
Teppo and Esty, 1994).
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